Skip to content

八校联考--T4

Published: at 04:06

题面

[NOIP2017 提高组] 奶酪

现有一块大奶酪,它的高度为 hh,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z=0z = 0,奶酪的上表面为 z=hz = h

现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。

位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑 到奶酪的上表面去?

空间内两点 P1(x1,y1,z1)P_1(x_1,y_1,z_1)P2(x2,y2,z2)P2(x_2,y_2,z_2) 的距离公式如下:

dist(P1,P2)=(x1x2)2+(y1y2)2+(z1z2)2\mathrm{dist}(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2}

思路

神犇说可以使用并查集,但是还没想出来